Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

J-PARC Transmutation Experimental Facility Program

Maekawa, Fujio; Transmutation Expeimental Facility Design Team

Plasma and Fusion Research (Internet), 13(Sp.1), p.2505045_1 - 2505045_4, 2018/05

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is promoting development of the P-T technology by using an accelerator driven system (ADS). To facilitate the development, we have a plan to construct the Transmutation Experimental Facility (TEF) as one of experimental facilities of J-PARC (Japan Proton Accelerator Research Complex). TEF consists of two facilities: the ADS Target Test Facility (TEF-T) and the Transmutation Physics Experimental Facility (TEF-P). Recent progress in design and R&D efforts toward construction of J-PARC TEF will be presented.

Journal Articles

Current status of the high intensity pulsed spallation neutron source at J-PARC

Takada, Hiroshi

Plasma and Fusion Research (Internet), 13(Sp.1), p.2505013_1 - 2505013_8, 2018/03

The pulsed spallation neutron source of Japan Proton Accelerator Research Complex (J-PARC) has been supplying users with high intensity and sharp pulse cold neutrons using the moderators with following distinctive features; (1) 100% para-hydrogen for increasing pulse peak intensity with decreasing pulse tail, (2) cylindrical shape with 14 cm diam.$$times$$12 cm long for providing high intensity neutrons to wide neutron extraction angles of 50.8$$^{circ}$$, (3) neutron absorber made from Ag-In-Cd alloy to make pulse width narrower and pulse tails lower. Actually, it was measured at a low power operation that high neutron intensity of 4.5$$times$$10$$^{12}$$ n/cm$$^{2}$$/s/sr could be emitted from the coupled moderator surface for 1-MW operation, and a superior resolution of $$Delta$$d/d = 0.035% was achieved at a beamline (BL8) with a poisoned moderator, where d is the d-spacing of reflection. Towards the goal to achieve the target operation at 1-MW for 5000 h in a year, technical developments to mitigate cavitation damages on the target vessel with injecting gas micro-bubbles into mercury target and design improvement of target vessel structure to reducing welds and bolt connections as much as possible are under way.

Journal Articles

Beam extraction by the laser charge exchange method using the 3-MeV LINAC in J-PARC

Takei, Hayanori; Hirano, Koichiro; Tsutsumi, Kazuyoshi; Meigo, Shinichiro

Plasma and Fusion Research (Internet), 13(Sp.1), p.2406012_1 - 2406012_6, 2018/03

The Japan Proton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10 W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250 kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3 MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 8 W equivalent and an accuracy of about 2% was obtained under the J-PARC linac beam condition.

Journal Articles

Development of neutron resonance transmission analysis as a non-destructive assay technique for nuclear nonproliferation

Tsuchiya, Harufumi; Kitatani, Fumito; Maeda, Makoto; Toh, Yosuke; Kureta, Masatoshi

Plasma and Fusion Research (Internet), 13(Sp.1), p.2406004_1 - 2406004_4, 2018/02

Recently, it has become important in the field of nuclear nonproliferation and nuclear security to quantify nuclear materials (NMs) of uranium and plutonium in nuclear fuel using a non-destructive assay (NDA) technique. Currently, there is no reliable NDA system to apply to nuclear fuels such as spent fuel, fuel debris and next generation fuel for nuclear transmutation. Accordingly, development of NDA techniques for quantification of NMs in those fuels is an urgent issue. Neutron resonance transmission analysis (NRTA) is one candidate that is applicable to the quantification of NMs. Utilizing pulsed neutron beams, NRTA analyzes the content of a sample by measuring neutron beams that are transmitted from the sample. It is one of the reliable NDA methods that are based on a neutron time-of-flight technique for accurately evaluating nuclear data such as total cross sections and resonance parameters. A present NRTA system generally requires a large electron linear accelerator to produce intense neutron beams. Therefore this is not so easy to apply to various facilities that are used to measure NMs. Given this situation, a compact NRTA system would be required for practical applications of a method to quantify NMs in various samples. In order to realize a compact NRTA system, we consider two types of system: one uses a D-T neutron generator with pulse width of 10 $$mu$$sec and the other a small electron linac with pulse width of 1 $$mu$$sec Assuming each system is applied to measurements of NMs in spent fuel, numerical calculations were carried out and the results showed that the pulse widths of neutron beam largely affect the NRTA measurements. In this presentation, we will talk about the NRTA technique and give a schematic design of a compact NRTA system. Then, comparing calculation results for a D-T tube with those for a small electron linac, we especially discuss how the pulse widths of neutron beams to be used for NRTA affect the measurement of NMs in nuclear fuel.

4 (Records 1-4 displayed on this page)
  • 1